RC20 CONGRESSO NAZIONALE

16 • 17 • 18 DICEMBRE

NUOVE LINEE GUIDA 2021: RIANIMAZIONE CARDIOPOLMONARE

POST-LOCKDOWN

RCP Neonatale

Daniele Trevisanuto Università degli Studi di Padova

Conflicts of interest

- Member of the ILCOR Neonatal Resuscitation Task Force
- Member of the ERC NLS Science and Education Committee

International Liaison Committee on Resuscitation (ILCOR)

Bloom RS, Cropley C, editors. Textbook of

neonatal resuscitation

cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part VII. Neonatal resuscitation. (JAMA, Oct 1992)

[1992]

Guidelines for

(b) = Resuscitation ropean Resuscitation Council Guidelines for Resuscitation 2015 door 7. Recussitation and support of transition of tubers at both r Cardiopnimonary Besuscitation (CPR) and mergency Cardiovescular Care (ECC) of Pediatric PEDIATRICS [2020] [2015] [2010] [2005] [2000]

AHA committee on cardiopulmonary resuscitation (adults)

Empirical observations [1987]

[<1960]

Guidelines for Neonatal Resuscitation (history)

Summary of changes since the 2015 guidelines

Summary of changes since the 2015 guidelines Management of the umbilical cord

Clamping after at least 60 s is recommended, ideally after the lungs are aerated. Where delayed cord clamping is not possible cord milking should be considered in infants >28 weeks gestation.

Infants born through meconium-stained liquor

In non-vigorous infants, recommendations are against immediate laryngoscopy with or without suction after delivery, because this may delay aeration and ventilation of the lungs.

Use of the laryngeal mask

If facemask ventilation is unsuccessful or if tracheal intubation is unsuccessful or not feasible a laryngeal mask may be considered as an alternative means of establishing an airway in infants of >34 weeks gestation (about 2000 g, although some devices have been used successfully in infants down to 1500 g).

Inflation pressure

If there is no response to initial inflations despite an open airway then a gradual increase in the inflation pressure is suggested.

A starting pressure of 25 cm H_2O is suggested for preterm infants < 32 weeks gestation.

Air/oxygen for preterm resuscitation

Recommendations are for starting in air at 32 weeks gestation or more, 21-30% inspired oxygen at 28-31 weeks gestation and 30% inspired oxygen at <28 weeks gestation.

The concentration should be titrated to achieve saturations of \geq 80% at 5 min of age because there is evidence of poorer outcomes where this is not achieved.

Chest compressions

If chest compressions are required, the inspired oxygen concentration should be increased to 100% and consideration given towards securing the airway ideally with a tracheal tube.

Vascular access

The umbilical vein is still favoured as the optimal route of access but, intraosseous access is an alternative method of emergency access for drugs/fluids.

Adrenaline

Where the heart rate has not increased after optimising ventilation and chest compressions an intravenous dose of adrenaline of 10–30 micrograms kg⁻¹ is recommended, repeated every 3–5 min in the absence of a response.

Glucose during resuscitation

An intravenous dose of 250 mg kg⁻¹ (2.5 mL kg⁻¹ of 10% glucose) is suggested in a prolonged resuscitation to reduce the likelihood of hypoglycaemia.

Prognosis

Failure to respond despite 10–20 mins of intensive resuscitation is associated with high risk of poor outcome. It is appropriate to consider discussions with the team and family about withdrawal of treatment if there has been no response despite the provision of all recommended steps of resuscitation and having excluded reversible causes

Infants born through meconium-stained liquor

TABLE 1 ■ Summary of NRP/AHA Recommendation for Delivery Room Manageme	ent of Meconium-Stained Newborn over the Years
--	--

				NRP Edition	(Year), AHA Guideline		
Guidelines	First Edition (1987)	Second Edition (1990)	Third Edition (1994)	Fourth Edition (2000), AHA 2000	Fifth Edition (2006) AHA 2005	Sixth Edition (2011), AHA 2010	Seventh Edition (2016), AHA 2015
Intrapartum oro- nasopharyngeal suction after delivery of head	Yes	Yes	Yes	Yes	No	No	No
Endotracheal intubation and suction	Yes for all	Yes for all	Yes for all, notes controversy regarding vigorous infants	Yes for nonvigorous infants, not recommended for vigorous infants (AHA class I)	Yes for nonvigorous infants (AHA class indeterminate), not recommended for vigorous infants	Yes for nonvigorou infants, because insufficient evidence to change practice	evidence to continue this practice (AHA

Abbreviations: AHA = American Heart Association; NRP = Neonatal Resuscitation Program.

Meconium Aspiration Syndrome

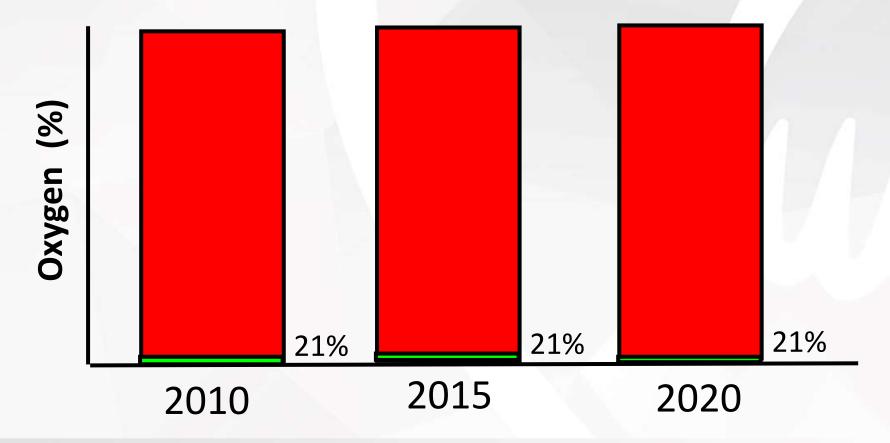
	ETT suc	ETT suction No ETT suction				Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI		
Chettri, 2015	20	61	19	61	18.9%	1.05 [0.63, 1.77]		-		
Kumar, 2019	21	66	15	66	15.0%	1.40 [0.79, 2.47]				
Nangia, 2016	28	87	23	88	22.8%	1.23 [0.77, 1.96]		-		
Singh, 2018	31	75	44	77	43.3%	0.72 [0.52, 1.01]		-		
Total (95% CI)		289		292	100.0%	1.00 [0.80, 1.25]		*		
Total events	100		101							
Heterogeneity: Chi ² =	5.83, df=	3 (P = 0	$(0.12); I^2 = 49$	1%			0.04	014	400	
Test for overall effect							0.01	0.1 1 10 Favor ETT suction Favor no ETT suction	100 n	

Survival at discharge

	No ETT su	iction	ETT suc	tion		Risk Ratio	Risk Ra	tio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed,	95% CI
Chettri, 2015	54	61	53	61	20.2%	1.02 [0.89, 1.16]	+	
Kumar, 2019	61	66	57	66	21.7%	1.07 [0.95, 1.20]	+	
Nangia, 2016	78	87	84	88	31.8%	0.94 [0.86, 1.02]	•	
Singh, 2018	71	75	70	77	26.3%	1.04 [0.95, 1.14]	*	
Total (95% CI)		289		292	100.0%	1.01 [0.96, 1.06]		
Total events	264		264					
Heterogeneity: Chi2=	4.23, df = 3	(P = 0.2)	4); 12 = 299	%			504	46 4
Test for overall effect							0.01 0.1 1 Favor no ETT suction Fa	10 10 avor ETT suction

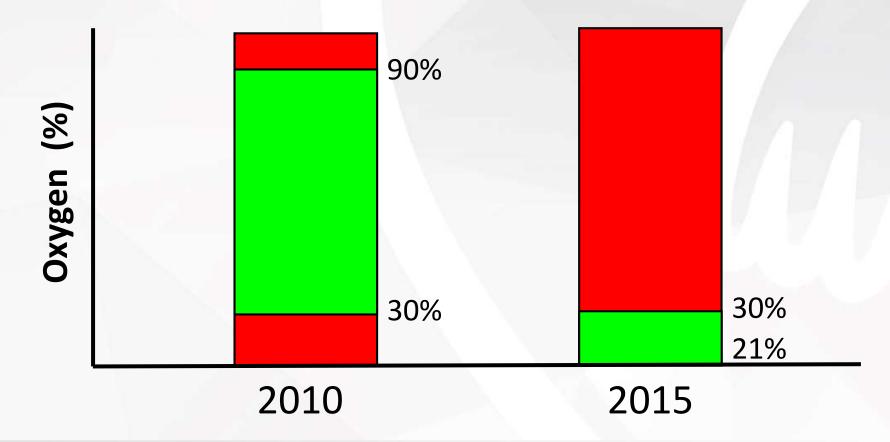
Infants born through meconium-stained liquor

In non-vigorous infants, recommendations are against immediate laryngoscopy with or without suction after delivery, because this may delay aeration and ventilation of the lungs.



Air/oxygen for preterm resuscitation

Oxygen to initiate resuscitation in near-term & full-term infants



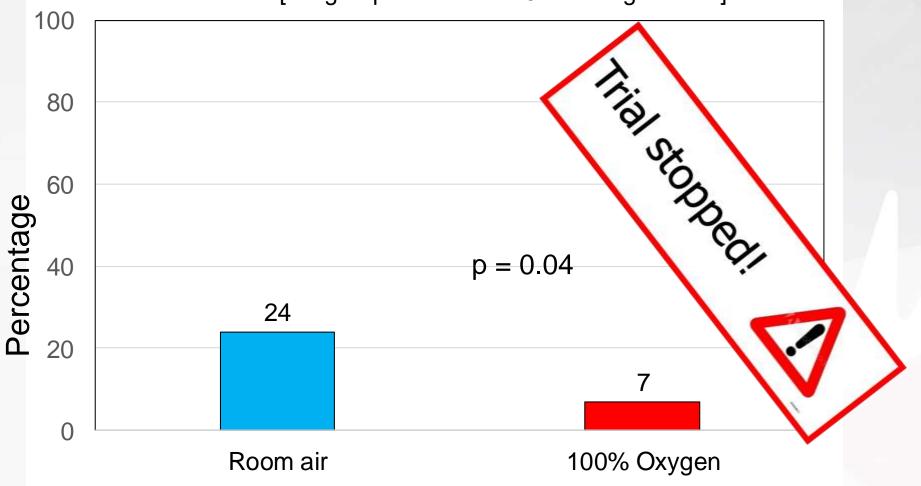
Wyckoff MH et al. 2015, 2020 AHA Guidelines
Wyllie J et al. 2015, Madar J et al. 2021 ERC Guidelines

Oxygen to initiate resuscitation in preterm infants (<35 wks)

Wyckoff MH et al. 2015 AHA Guidelines Wyllie J et al. 2015 ERC Guidelines

Torpido Study

- ➤ Study design: RCT
- ➤ GA: <32 weeks' gestation
- > Treatment: RA versus 100% oxygen
- > SpO2 targets: 65-95% up to 5 min and 85-95% until admission


Variable	All Infants					
	RA, <i>n</i> = 144	100% 0_2 , $n = 143$	RR (95% CI)			
All deaths	14 (10)	6 (4)	2.3 (0.9–5.7), P = .10			
Neonatal death (death <28 d)	12 (8)	5 (3)	3.1 (0.9-11.1), P = .0			
Death before hospital discharge	14 (10)	5 (3)	2.6 (0.9–7.1), <i>P</i> = .06			
Age of death, d	12 (2–95)	4 (1-11)	P = .24			
Causes of death ^c						

Mortality rate

[subgroup of babies <28 weeks' gestation]

Adjusted OR for Outcome - Room Air as reference

Outcome	Intermediate	100% O ₂		
Primary				
Death or NDI	1.01 (0 .77-1.34)	1.03 (0.78-1.35)		
Death or severe NDI	1.14 (0.82-1.58)	1.22 (0.90- 1.67)		
Secondary				
Death	1.03 (0.68 -1.56)	0.93 (0.63-1.37)		
NDI	1.00 (0.74- 1.35)	1.08 (0.81-1.45)		
Severe NDI	1.22 (0.78-1.91)	1.57 (1.05-2.35)		
Language score < 70	1.54 (0.89-2.67	1.73 (1.02-2.91)		

No significant differences: CP, Cognitive score < 85, Cognitive score < 70, Visual impairmen, Hearing impariment

Initial Oxygen Concentration for Preterm Neonatal Resuscitation

CONCLUSIONS: The ideal initial F_{10_2} for preterm newborns is still unknown, although the majority of newborns ≤ 32 weeks' gestation will require oxygen supplementation.

Recommendation of FiO2 and newborn resuscitation

- Term and near term infants

OR for mortality: 0.69 (95%CI 0.54-0.88) in favour of air

Start with room air – adjust according to SpO2

- Preterm infants 28-31 weeks GA

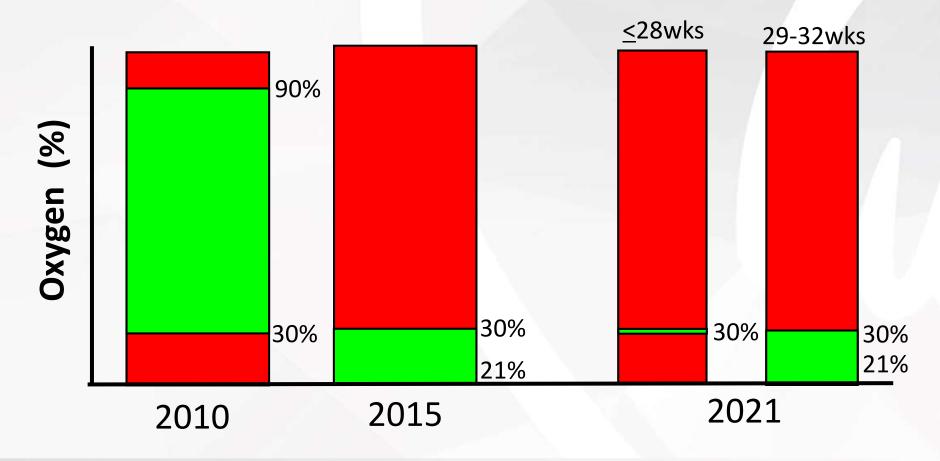
OR for mortality: 1.9 (95%CI 0.33-11.1)

Start with 21-30% – adjust according to SpO2

- Preterm infants < 28 weeks GA

OR for mortality: 5.3 (95% CI 1.35-20)

Don't start with 21%

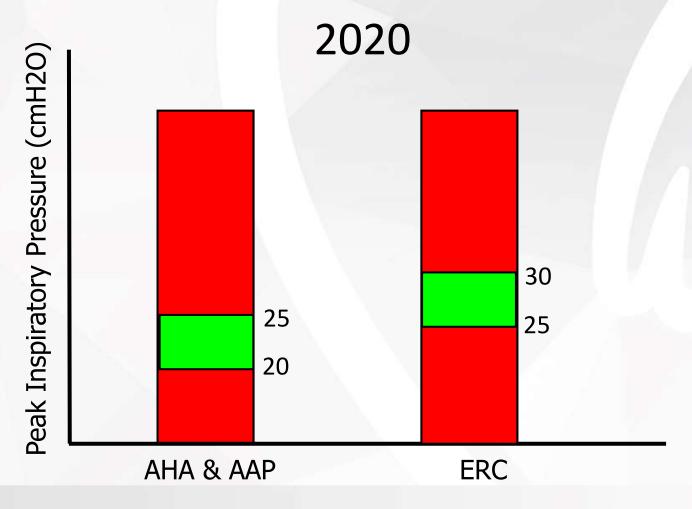

Start with 30% – adjust according to SpO2

Until more data are available from randomized studies aim at a SpO2 of 80-85% within 5 minutes

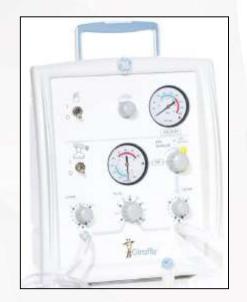
Oxygen to initiate resuscitation in preterm infants

SpO2 >80% at 5 minutes!

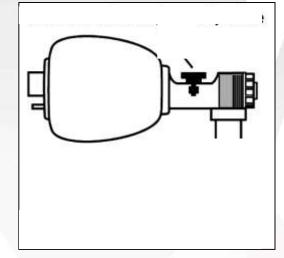
Wyckoff MH et al. 2015 AHA Guidelines
Wyllie J et al. Resuscitation 2020
Madar J at al. Resuscitation 2021

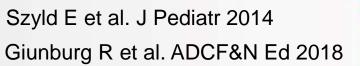


Inflation pressure


Inspiratory Pressure for Preterm Infants (GA<32 weeks)

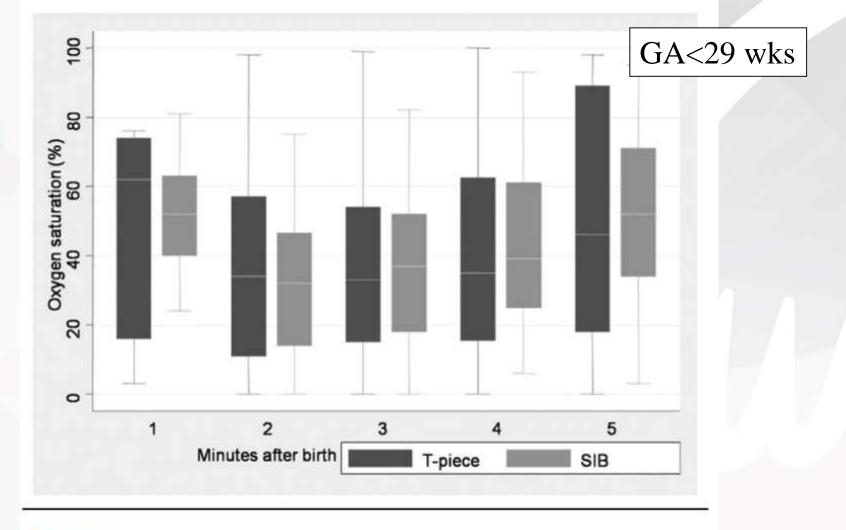
Kalid A et al. Circulation 2020 Madar J et al. Resuscitation 2021





T-piece

Self-inflating bag



Guidelines 2015

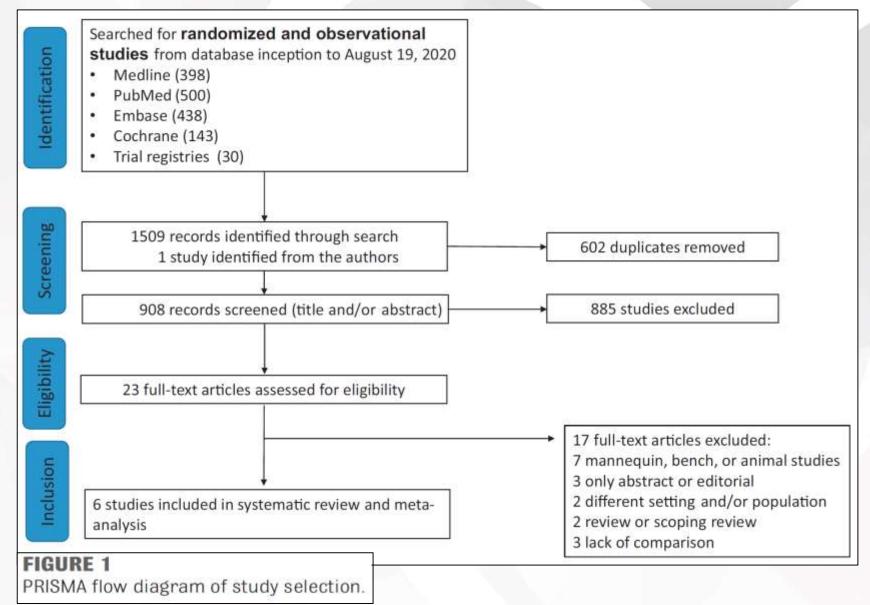
Treatment Recommendation

"There is insufficient evidence so that a recommendation of one device over another would be purely speculative..."

Figure 4. SpO₂ shown at each minute, for the first 6 minutes after birth, in the T-piece and SIB group. The *box plots* show the median, IQR, and range.

Outcome measure	T-piece group (n = 511)	SIB group ($n = 516$)	OR (95% CI)*	P value
Outcomes in the delivery room				
Intubation for ventilatory support in the delivery room, n (%)	86 (17)	134 (26)	0.58 (0.4-0.8)	.002
1-min Apgar score ≤3, n (%)	153 (30)	177 (34)	1.3 (0.9-1.7)	.070
5-min Apgar score ≤5, n %)	30 (6)	47 (9)	1.5 (0.9-2.5)	.080
Drugs/chest compressions, n (%)	8 (1.6)	17 (3.3)	0.5 (0.2-1.1)	.090
Time to spontaneous breathing, min, mean \pm SD [†]	2.7 ± 36	3.05 ± 3.9	1675	.100
Time elapsed until HR > 100 hpm, min, median (IOR)	1 (0.5-1.6)	1 (0.5-1.8)		068
Maximum PIP, mean \pm SD [‡] variability	25.58 ± 1.9	28 ± 4.9		<.001
$PIP > 25 \text{ cm H}_2O$, n (%)	52 (10)	184 (37)	5.0 (3.6-7.0)	<.001
Mean maximum FiO ₂ in delivery room, mean ± SD	0.46 ± 0.19	0.50 ± 0.21		.001
Outcomes after the delivery room				
Mortality, n (%)	11 (2.2)	15 (2.9)	1.1 (0.5-2.5)	.810
Air leaks (pneumothorax and/or pneumomediastinum), n (%)	13 (2.5)	8 (1.6)	0.6 (0.2-1.4)	.250
Mechanical ventilation, n (%)	116 (22.7)	147 (28.5)	1.3 (0.9-1.8)	.160
Days on mechanical ventilation, mean \pm SD	5.0 ± 7.6	8.3 ± 13.3		.007
Days on CPAP, mean \pm SD	7.83 ± 11.3	7.96 ± 10.1	-	.901
Hypoxic ischemic encephalopathy, n (%)	21 (4.1)	28 (5.4)	1.3 (0.7-2.4)	.330
Use of oxygen, n (%)	208 (40.7)	222 (43.0)	1.1 (0.8-1.5)	.411
Days on oxygen, mean \pm SD	13.8 ± 17	22.8 ± 25	5. T 3	<.001

GA>26 weeks



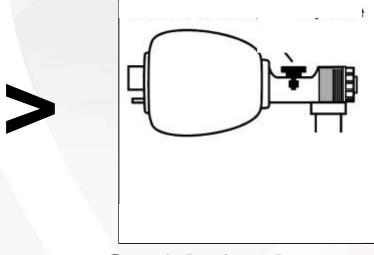
Outcome measure	T-piece group (n = 85)	SIB group (n = 110)	OR (95% CI)*	<i>P</i> value*
HR ≥100 bpm at 2 min, n (%)	75 (88.2)	84 (76.4)	0.43 (0.19-0.95)	.037
Intubation for ventilatory support, n (%)	45 (52.9)	76 (69.1)	2.01 (1.12-3.60)	.019
Drugs/chest compressions, n (%)	3 (3.5)	5 (4.6)	1.30 (0.30-5.61)	.723
Mechanical ventilation, n (%)	62 (72.9)	85 (77.3)	1.26 (0.66-2.43)	.487
BPD, n (%)	21 (24.7)	44 (40.0)	2.03 (1.09-3.79)	.036
Air leaks (pneumothorax and/or neumomediastinum), n (%)	3 (3.5)	2 (1.8)	0.51 (0.08-3.1)	.461
Use of oxygen, n (%)	71 (83)	101 (92)	2.2 (0.9-5.5)	.082
Days on oxygen, mean \pm SD	21 ± 20	35 ± 27	· - /	.0007

In-hospital mortality

Study or Subgroup	TPR Events	Total	SIB Events	Total	Weight	RR MH, Fixed, (95% CI)	RR MH, Fixed, (95% CI)
Dawson et al 2012	2	41	6	39	25.4%	0.32 (0.07 to 1.48)	
Kookna et al 2019	1	25	0	25	2.1%	3.00 (0.13 to 70.30)	
Szyld et al 2014	11	511	15	516	61.6%	0.74 (0.34 to 1.60)	
Thakur et al 2015	3	40	3	50	11.0%	1.25 (0.27 to 5.86)	-
Total (95% CI)		617		630	100.0%	0.74 (0.40 to 1.34)	•
Total events	17		24				368
Heterogeneity: $\chi^2 = 2$	2.36, df = 3 (P)	$=.50$); $I^2 =$	0%			0.01	0.1 1 10 100
Test for overall effect: 2	z = 1.01 (P = .3)	31)				0.01	0.1 1 10 100 Favors Favors

BPD

Study or Subgroup	TPR Events	Total	SIB Events	Total	Weight	RR MH, Fixed, (95% CI)		RI MH, Fixed	R d, (95% CI)	
Dawson et al 2012	15	41	11	39	19.9%	1.30 (0.68 to 2.47)		_	-	
Kookna et al 2019	0	25	1	25	2.7%	0.33 (0.01 to 7.81)	-		_	
Szyld et al 2014	21	511	44	516	77.4%	0.48 (0.29 to 2.80)		-		
Thakur et al 2015	0	40	0	50		Not estimable				
Total (95% CI)		617		630	100.0%	0.64 (0.43 to 0.95)		•	•	
Total events	36		56							
Heterogeneity: $\chi^2 = 6$ Test for overall effect:	5.01, df = 2 (P z = 2.24 (P = .		= 67%				0.01	0.1 Favors	1 10 Favors	10


COMPARISON 1: T-PIECE RESUSCITATOR vs SELF-INFLATING BAG

Where resources permit, we suggest the use of a T-Piece resuscitator over the use of a self-inflating bag in infants receiving positive pressure ventilation at birth. (Weak recommendation, very low certainty of evidence). A self-inflating bag should be available as a back-up device for the T-piece resuscitator in case of gas supply failure (technical remark).

T-piece

Self-inflating bag

Which T-piece?

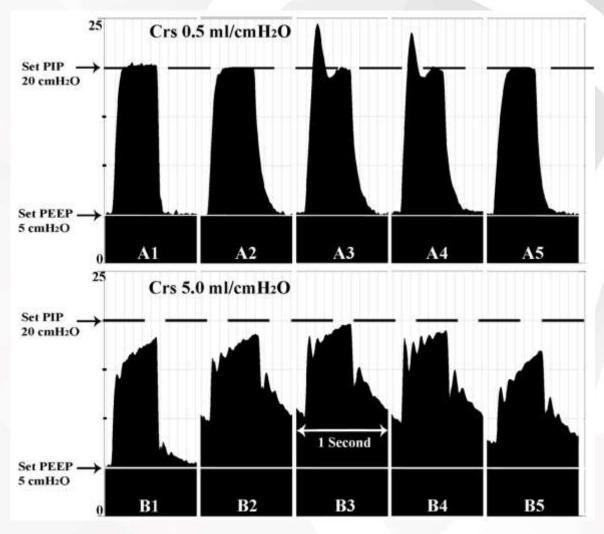


Figure 4 Examples of recorded pressure waveforms for each TPR device tested: 1: rPAP; 2: Neopuff; 3: GE Panda; 4: Draeger Resuscitaire; and 5: Atom at test lung compliances: A: 0.5 mL/cmH₂O and B: 5.0 mL/cmH₂O. Time scale 1 s per segment. PEEP, positive-end expiratory pressure; PIP, peak inflation pressure; TPR, T-piece resuscitator.

Double NF prong

Short ong

sal prongs Short binasal cannulae

Use of the laryngeal mask

International Liaison Committee on Resuscitation (ILCOR)

Bloom RS, Cropley C, editors. Textbook of

neonatal resuscitation

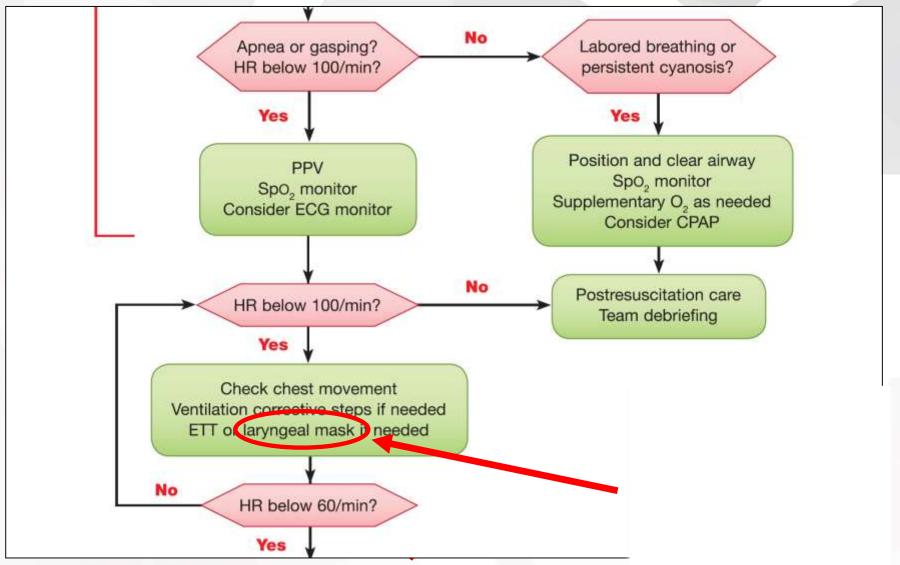
cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part VII. Neonatal resuscitation. (JAMA, Oct 1992)

[1992]

Guidelines for

(b) = Resuscitation ropean Resuscitation Council Guidelines for Resuscitation 2015 door 7. Recussitation and support of transition of tubers at both r Cardiopnimonary Besuscitation (CPR) and mergency Cardiovescular Care (ECC) of Pediatric PEDIATRICS [2020] [2015] [2010] [2005] [2000]

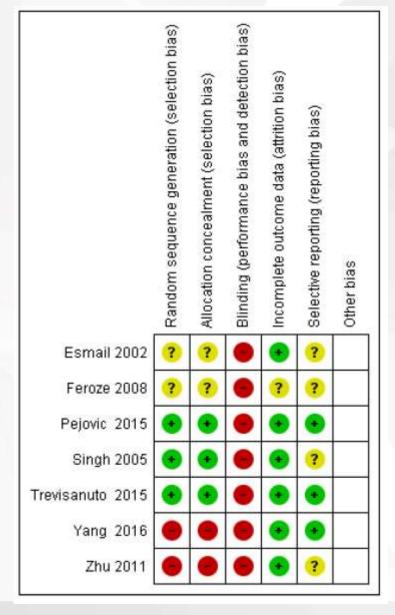
AHA committee on cardiopulmonary resuscitation (adults)


Empirical observations [1987]

[<1960]

Guidelines for Neonatal Resuscitation (history)

Cochrane Database of Systematic Reviews

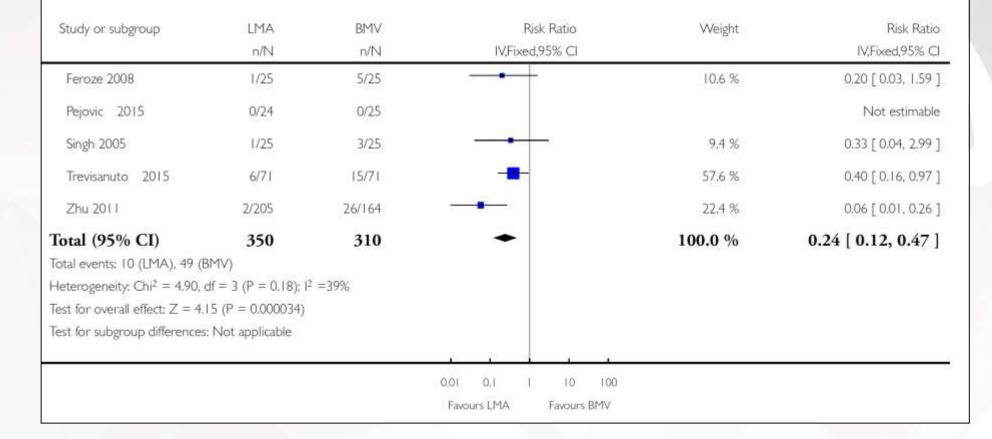

Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation (Review)

Qureshi MJ, Kumar M

7 RCT

Very low- to low-quality evidence

[794 infants]

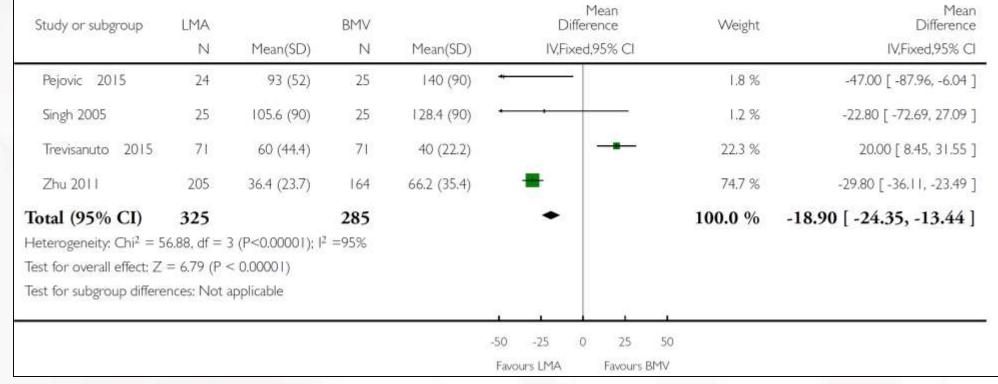

Analysis I.2. Comparison I LMA versus BMV, Outcome 2 Need for intubation.

Review: Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation

Comparison: I LMA versus BMV

Outcome: 2 Need for intubation

Need for intubation


Analysis I.4. Comparison I LMA versus BMV, Outcome 4 Ventilation time [seconds].

Review: Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation

Comparison: I LMA versus BMV

Outcome: 4 Ventilation time [seconds]

Ventilation time

Effective PPV LM vs. FM

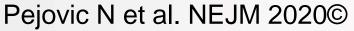
[late-preterm and full-term infants]

[7 RCT]

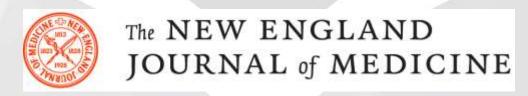
The NEW ENGLAND JOURNAL of MEDICINE

- **Original Article**
- ² A Randomized Trial of Laryngeal Mask
- 3 Airway in Neonatal Resuscitation
- 4 Nicolas J. Pejovic, M.D., Ph.D., Susanna Myrnerts Höök, M.D., M.Med.,
- 5 Josaphat Byamugisha, M.D., Ph.D., Tobias Alfvén, M.D., Ph.D.,
- 6 Clare Lubulwa, M.D., M.Med., Francesco Cavallin, M.Sc.,
- 7 Jolly Nankunda, M.D., Ph.D., Hege Ersdal, M.D., Ph.D.,
- Mats Blennow, M.D., Ph.D., Daniele Trevisanuto, M.D., and
- Thorkild Tylleskär, M.D., Ph.D.

University of Bergen Norway


Makerere University, Kampala, Uganda

University of Padua Italy



Karolinska Instituted Sweden

November 26, 2020

RANDOMIZATION: day-by-day cluster randomization

or

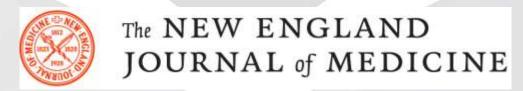
University of Bergen Norway

Makerere University, Kampala, Uganda

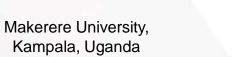
University of Padua Italy

Karolinska Instituted Sweden

PRIMARY OUTCOME: early neonatal death (within 7 days) or admission to NICU with moderate-to-sever HIE (Thomson score>11) at day 1 to day 5 during hospitalization.


Outcome	Laryngeal Mask Airway	Face Mask	Unadjusted Analysis		Adjusted Analysis†	
			Relative Risk (95% CI)	P Value	Relative Risk (95% CI)	P Value
	no./total n	. (%)				
Primary outcome	154/563 (27.4)	144/591 (24.4)	1.12 (0.92–1.37)	0.27	1.16 (0.90–1.51)	0.26
Secondary outcomes						
Advanced resuscitation	39/566 (6.9)	39/597 (6.5)	1.05 (0.69-1.62)	-	1.08 (0.63-1.86)	-
Early neonatal death	122/563 (21.7)	109/591 (18.4)	1.17 (0.93-1.48)	1.	1.21 (0.90-1.63)	i i
Very early neonatal death	89/563 (15.8)	85/591 (14.4)	1.10 (0.84-1.45)	-	1.13 (0.80-1.58)	_
Admission to NICU with Thompson score of ≥11 at days 1–5 during hospitalization	53/474 (11.2)	51/504 (10.1)	1.13 (0.89–1.70)	10000	1.27 (0.84–1.93)	3 73 3
Admission to NICU with Thompson score of ≥7 at days 1–5 during hospitalization	100/474 (21.1)	115/504 (22.8)	0.97 (0.78–1.21)	_	0.94 (0.70–1.27)	1-5
Any hospital admission during first 7 days of life	496/519 (95.6)	530/554 (95.7)	0.99 (0.97-1.02)	-	_	-

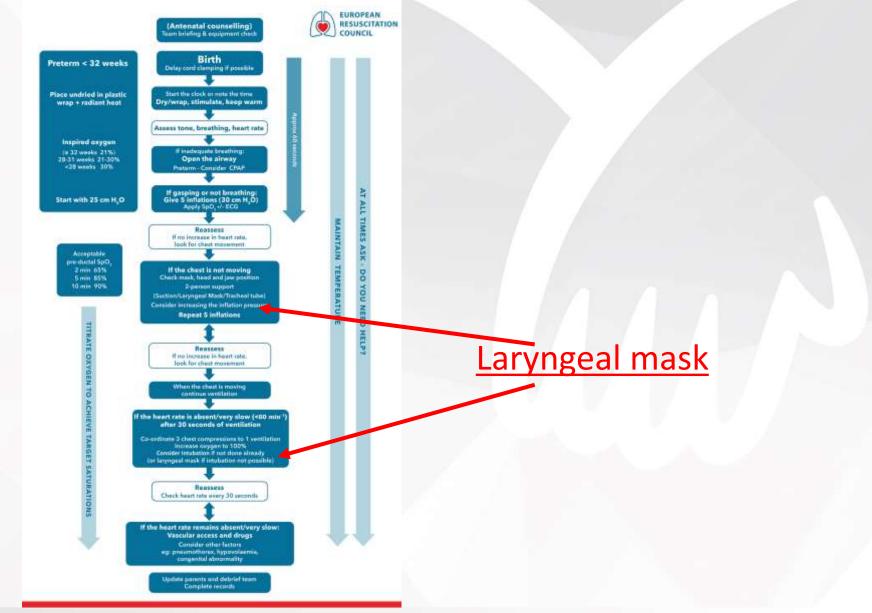
Outcome	Laryngeal Mask Airway	Face Mask	Unadjusted Analysis		Adjusted Analysis†	
			Relative Risk (95% CI)	P Value	Relative Risk (95% CI)	P Value
	no./total no. (%)					
Primary outcome	154/563 (27.4)	144/591 (24.4)	1.12 (0.92-1.37)	0.27	1.16 (0.90-1.51)	0.26
Secondary outcomes			12.			
Advanced resuscitation	39/566 (6.9)	39/597 (6.5)	1.05 (0.69-1.62)	_	1.08 (0.63-1.86)	-
Early neonatal death	122/563 (21.7)	109/591 (18.4)	1.17 (0.93-1.48)	_	1.21 (0.90-1.63)	_
Very early neonatal death	89/563 (15.8)	85/591 (14.4)	1.10 (0.84-1.45)	_	1.13 (0.80-1.58)	-
Admission to NICU with Thompson score of ≥11 at days 1–5 during hospitalization	53/474 (11.2)	51/504 (10.1)	1.13 (0.89–1.70)	_	1.27 (0.84–1.93)	-
Admission to NICU with Thompson score of ≥7 at days 1–5 during hospitalization	100/474 (21.1)	115/504 (22.8)	0.97 (0.78–1.21)	=	0.94 (0.70–1.27)	=
Any hospital admission during first 7 days of life	496/519 (95.6)	530/554 (95.7)	0.99 (0.97-1.02)	_	<u></u>	_


November 26, 2020

Conclusions

In neonates with asphyxia, the LMA was safe in the hands of midwives but was not superior to face-mask ventilation with respect to early neonatal death and moderate-to-severe hypoxic-ischemic encephalopathy.

University of Padua Italy

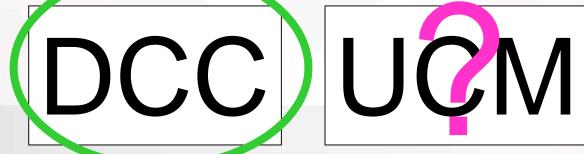


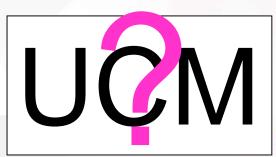
Karolinska Instituted Sweden

Use of the laryngeal mask

If facemask ventilation is unsuccessful or if tracheal intubation is unsuccessful or not feasible a laryngeal mask may be considered as an alternative means of establishing an airway in infants of >34 weeks gestation (about 2000 g, although some devices have been used successfully in infants down to 1500 g).

Management of the umbilical cord



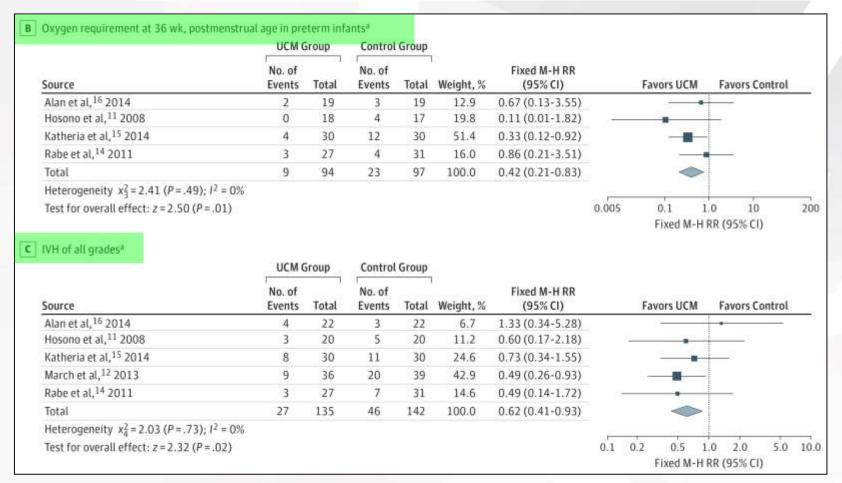


Guidelines 2015

Cord milking

Treatment Recommendation

"We **suggest against** the routine use of cord milking for infants born at less than 29 weeks of gestation because there is insufficient published human evidence of benefit."


"Cord milking may be considered on an individualized basis or in a research setting as it may improve initial mean blood pressure, hematological indices and intracranial hemorrhage. There is no evidence for improvement or safety in long-term outcomes. (Weak recommendation, low level of evidence)."

Original Investigation

Efficacy and Safety of Umbilical Cord Milking at Birth A Systematic Review and Meta-analysis

Benefits of umbilical cord milking versus delayed cord clamping on neonatal outcomes in preterm infants: A systematic review and meta-analysis

Conclusions

UCM wasn't reduced in-hospital mortality and need for transfusion compared to DCC. But our study suggests that UCM may lower the risk of IVH and improve certain neurodevelopmental outcomes compared to DCC in preterm infants.

Premature Infants Receiving Cord Milking Or Delayed Cord Clamping: A Randomized Controlled Non-inferiority Trial

P: In infants with GA 23-31 weeks

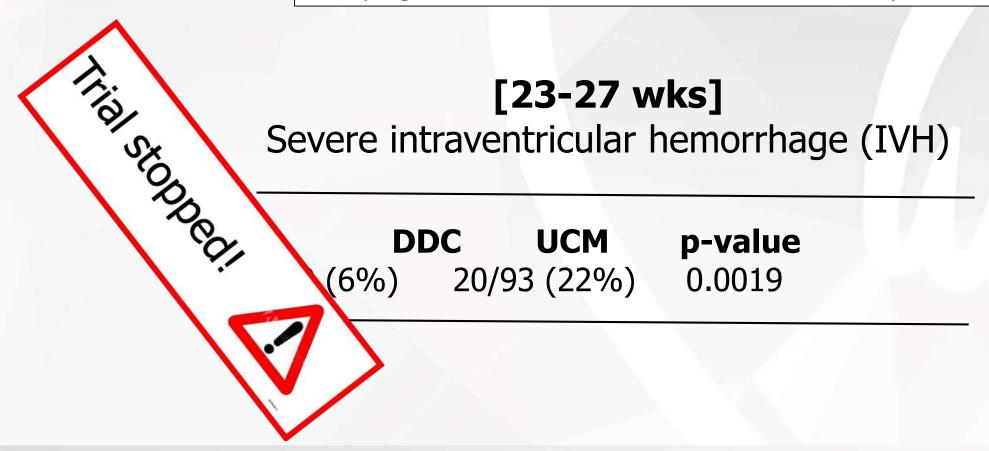
I: does Umbilical Cord Milking

C: Delayed Cord Clamping

O: resuce Intraventricular hemorrhage (IVH) or Death

Premature Infants Receiving Cord Milking Or Delayed Cord Clamping: A Randomized Controlled Non-inferiority Trial

Primary outcome


Intraventricular hemorrhage (IVH) or death

DDC	UCM	p-value
19/238 (8%)	28/236 (12%	%) 0.16

Premature Infants Receiving Cord Milking Or Delayed Cord Clamping: A Randomized Controlled Non-inferiority Trial

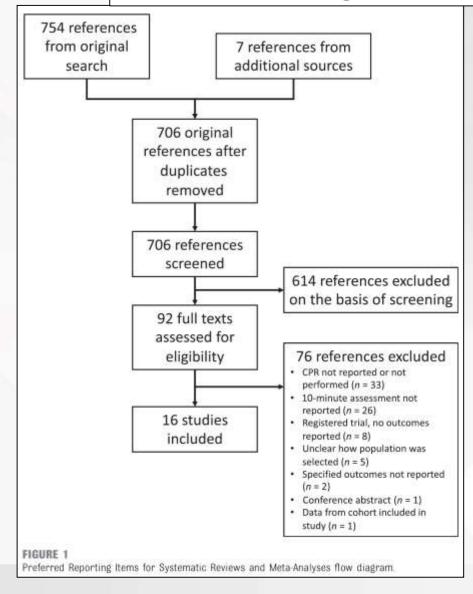
Management of the umbilical cord

Clamping after at least 60 s is recommended, ideally after the lungs are aerated. Where delayed cord clamping is not possible cord milking should be considered in infants >28 weeks gestation.

Prognosis

An Apgar score of 0 at 10 minutes is a strong predictor of mortality and morbidity in late preterm and term infants.

We suggest that, in infants with <u>an Apgar score of 0 after 10 minutes of resuscitation</u>, if the heart rate remains undetectable, it <u>may be reasonable to stop assisted ventilation</u>; however, the decision to continue or discontinue resuscitative efforts must be individualized.



"Newborns immediately after birth presenting with at least 10 minutes of asystole, bradycardia, or pulseless electrical activity for which CPR is indicated."

Subgroup	Studies Contributing	Infants, N	Survival to Last Follow-up, <i>n</i> (%)	Infants Assessed for Neurodevelopment, <i>n</i>	Survival Without Moderate or Severe NDI	
					n (% of Survivors Assessed)	n (% of All Enrolled)
Population level studies	612,13,15,16,23,24	240	67 of 240 (28)	15	9 of 15 (60)	9 of 131 ^a (7)
Therapeutic hypothermia treatment	910,11,17,19-21,23-25	206	122 of 206 (59)	57	21 of 57 (37)	21 of 105 ^b (20)
Gestational age ≥ 36 wk	1310-13,15,17-21,23-25	350	189 of 350 (54)	73	23 of 73 (32)	23 of 166 ^c (14)
Gestational age <36 wk	7 12,13,15,20,23-25	144	41 of 144 (28)	8	5 of 8 (63)	5 of 42 ^d (12)
Heart rate detection reported ≥ 20 min after birth	5 ^{11,20,21,23,24}	39	15 of 39 (38)	15	6 of 15 (40)	6 of 39 (15)

If the <u>heart rate</u> of a <u>newly born term infant remains</u> undetectable for more than 20 minutes after birth despite the provision of all recommended steps of resuscitation and excluding reversible causes, discuss with the clinical team and family and consider stopping resuscitation.

Summary of changes since the 2015 guidelines

Summary of changes since the 2015 guidelines Management of the umbilical cord

Clamping after at least 60 s is recommended, ideally after the lungs are aerated. Where delayed cord clamping is not possible cord milking should be considered in infants >28 weeks gestation.

Infants born through meconium-stained liquor

In non-vigorous infants, recommendations are against immediate laryngoscopy with or without suction after delivery, because this may delay aeration and ventilation of the lungs.

Use of the laryngeal mask

If facemask ventilation is unsuccessful or if tracheal intubation is rkin unsuccessful or not feasible a laryngeal mask may be conalternative means of establishing an airway in infe gestation (about 2000 g, although some d successfully in infants down to 1500

Inflation pressure

If there is no response to initial inflation gradual increase in the inflation pressure A starting pressure of 25 cm H₂O is sugg for preterm infants <32 weeks gestation.

Air/oxygen for preterm resuscitation

Recommendations are for starting in air at 32 weeks gestation or more, 21-30% inspired oxygen at 28-31 weeks gestation and 30% inspired oxygen at <28 weeks gestation.

The concentration should be titrated to achieve saturations of >80% at 5 min of age because there is evidence of poorer outcomes where this is not achieved.

Chest compressions

If chest compressions are required, the inspired oxygen concentration should be increased to 100% and consideration given towards securing the airway ideally with a tracheal tube.

Vascular access

The umbilical vein is still favor red as the optimal route of access but, intraosseous accese ative method of emergency access for drugs/fluids

creased after optimising ventilation s an intravenous dose of adrenaline of ams kg⁻¹ is recommended, repeated every 3-5 min in the of a response.

Glucose during resuscitation

An intravenous dose of 250 mg kg⁻¹ (2.5 mL kg⁻¹ of 10% glucose) is suggested in a prolonged resuscitation to reduce the likelihood of hypoglycaemia.

Prognosis

Failure to respond despite 10-20 mins of intensive resuscitation is associated with high risk of poor outcome. It is appropriate to consider discussions with the team and family about withdrawal of treatment if there has been no response despite the provision of all recommended steps of resuscitation and having excluded reversible causes

Italian Resuscitation Council

©©©.ircouncil.it

Grazie!

daniele.trevisanuto@unipd.it

