RC 200 CONGRESSO NAZIONALE 16•17•18 DICEMBRE

NUOVE LINEE GUIDA 2021: RIANIMAZIONE CARDIOPOLMONARE POST-LOCKDOWN

దద

Algoritmi RCP pediatrica 2021

Paolo Biban

Terapia Intensiva Pediatrica UOC Pediatria ad Indirizzo Critico e Patologia Neonatale Azienda Ospedaliera Universitaria Integrata Verona

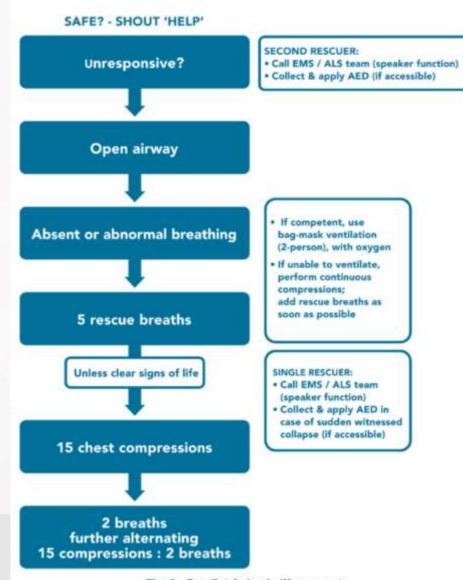
Accademia Medica Infermieristica di Emergenza e Terapia Intensiva Peolatrica

Non conflitti di interesse da dichiarare

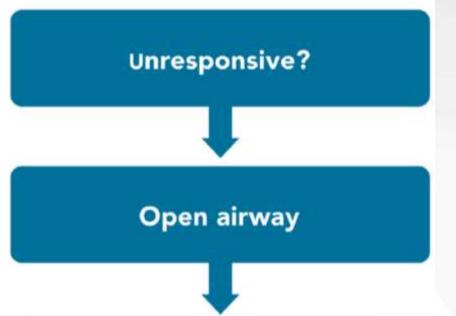
European Resuscitation Council Guidelines 2021: Paediatric Life Support

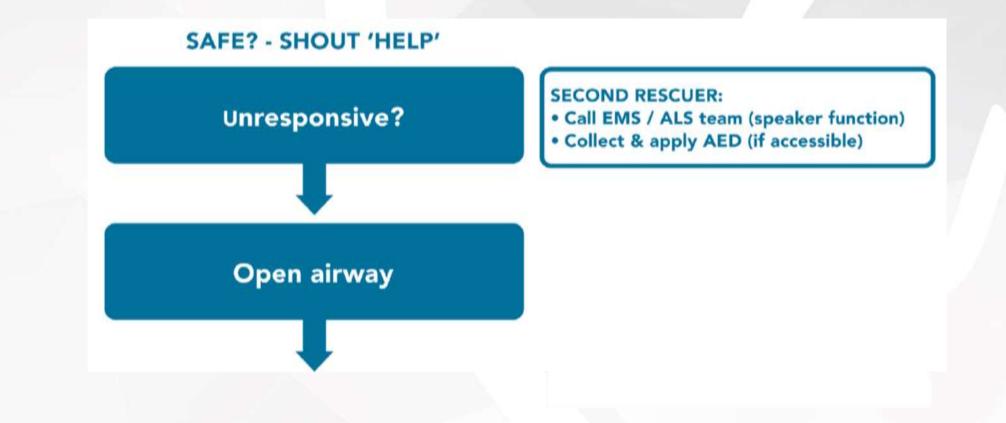
RESUSCITATION 161 (2021) 327 -387

Outline


- Algoritmo PBLS-D
 - Compressions-Only or Rescue Breathing-CPR?
- Algoritmo Disostruzione da corpo estraneo
 - I dispositivi anti-soffocamento funzionano?
- Algoritmo PALS
 - Nel bambino intubato quante ventilazioni asincrone?

Resuscitation Council





Rimini

CONCRESSO NAZIONALE 16-17-18 DICEMBRE

NUMBEL LINEL GEDRA 2021

Absent or abnormal breathing

5 rescue breaths

Unless clear signs of life

- If competent, use bag-mask ventilation (2-person), with oxygen
- If unable to ventilate, perform continuous compressions; add rescue breaths as soon as possible

Italian Resuscitation Resuscitation

Rimini

CONGRESSO NAZIONALE 16-17-18 DICEMBRE

POST - LOCKDOWN

15 chest compressions

2 breaths further alternating 15 compressions : 2 breaths

Rimini

CONGRESSO NAZIONALE 16-17-18 DICEMBRE

POST-LOCKDOWN

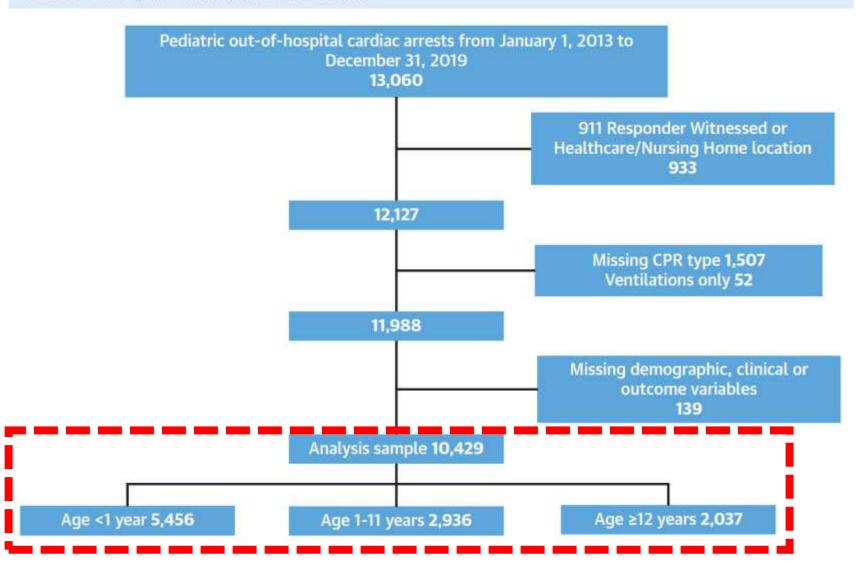
15 chest compressions

2 breaths further alternating 15 compressions : 2 breaths SINGLE RESCUER:
Call EMS / ALS team (speaker function)
Collect & apply AED in case of sudden witnessed collapse (if accessible)

Compression-Only Versus Rescue-Breathing Cardiopulmonary Resuscitation After Pediatric Out-of-Hospital Cardiac Arrest

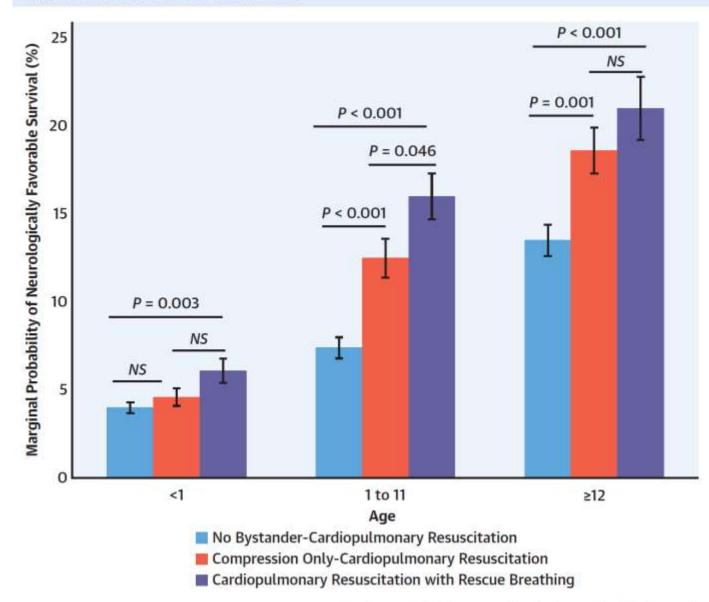
Naim, M.Y. et al. J Am Coll Cardiol. 2021;78(10):1042-1052.


Compression-Only Versus Rescue-Breathing Cardiopulmonary Resuscitation After Pediatric Out-of-Hospital Cardiac Arrest


Naim, M.Y. et al. J Am Coll Cardiol. 2021;78(10):1042-1052.

OBJECTIVES

This study sought to test the hypothesis that RB-CPR is associated with improved neurologically favorable survival compared with CO-CPR following pediatric OHCA, and to characterize age-stratified outcomes with CPR type compared with no bystander CPR (NO-CPR).



Naim, M.Y. et al. J Am Coll Cardiol. 2021;78(10):1042-1052.

CENTRAL ILLUSTRATION Neurologically Favorable Survival and Cardiopulmonary Resuscitation Type in Infant, Children, and Adolescents

Naim, M.Y. et al. J Am Coll Cardiol. 2021;78(10):1042-1052.

Compression-Only Versus Rescue-Breathing Cardiopulmonary Resuscitation After Pediatric Out-of-Hospital Cardiac Arrest

Naim, M.Y. et al. J Am Coll Cardiol. 2021;78(10):1042-1052.

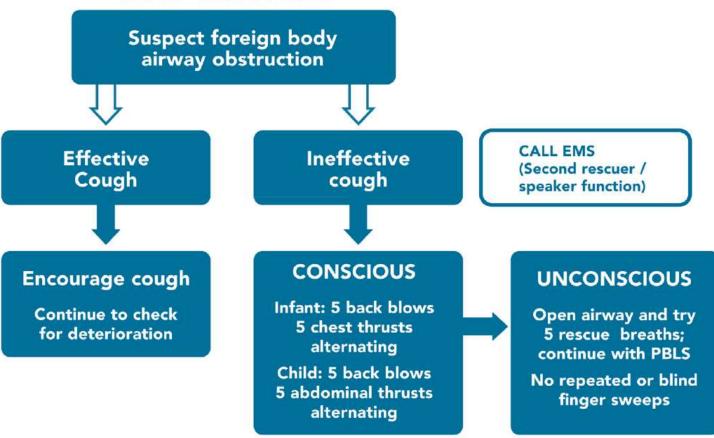
CONCLUSIONS CO-CPR was the most common type of bystander CPR in pediatric OHCA. RB-CPR was associated with better outcomes compared with CO-CPR. These results support present guidelines for RB-CPR as the preferred CPR modality for pediatric OHCA.

PAEDIATRIC FOREIGN BODY AIRWAY OBSTRUCTION



PAEDIATRIC FOREIGN BODY

SAFE? - SHOUT 'HELP'



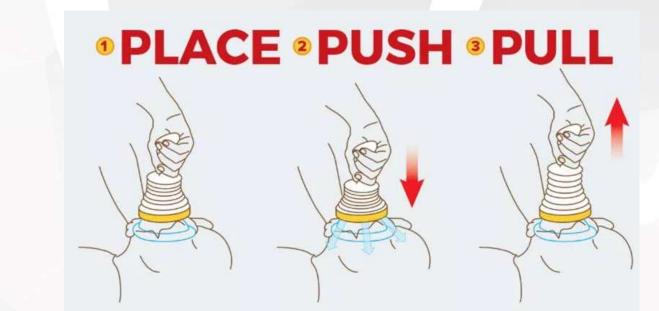
PAEDIATRIC FOREIGN BODY AIRWAY OBSTRUCTION

SAFE? - SHOUT 'HELP'

If obstruction relieved: urgent medical follow-up

A systematic review on the effectiveness of anti-choking suction devices and identification of research gaps

RESUSCITATION 153 (2020) 219 -226



A systematic review on the effectiveness of anti-choking suction devices and identification of research gaps

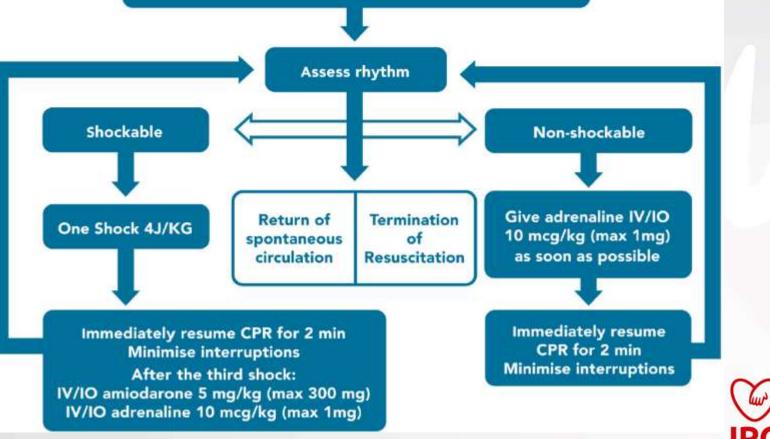
RESUSCITATION 153 (2020) 219 -226

A systematic review on the effectiveness of anti-choking suction devices and identification of research gaps

RESUSCITATION 153 (2020) 219 -226

Conclusions

- There are many weaknesses in the available data and few unbiased trials that test the effectiveness of anti-choking suction devices resulting in insufficient evidence to support or discourage their use.
- Practitioners should continue to adhere to guidelines authored by local resuscitation authorities which align with ILCOR recommendations.



Cardiac arrest recognised? (including bradycardia due to hypoxia or ischemia)

> Commence / continue PBLS Minimise interruptions Ensure the EMS /ALS team is alerted Attach defibrillator / monitor

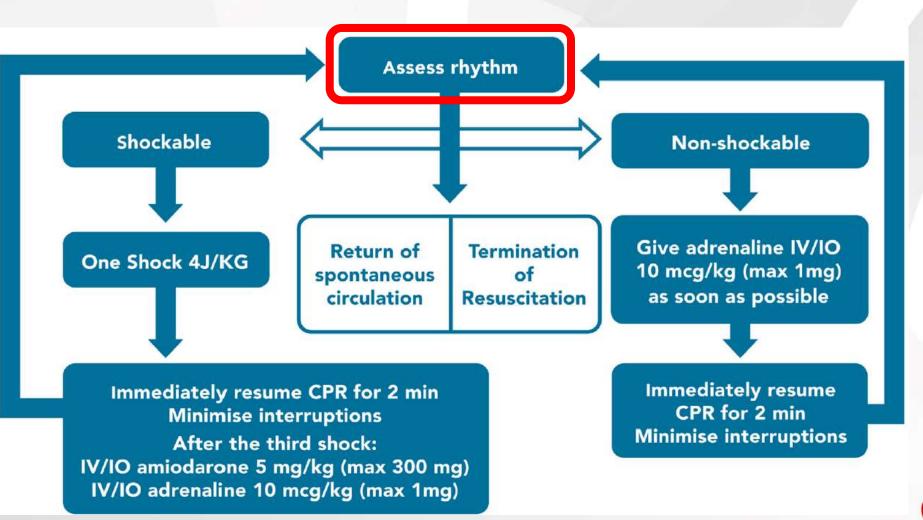
| Italian | Resuscitation | Council

SAFE? - SHOUT 'HELP'

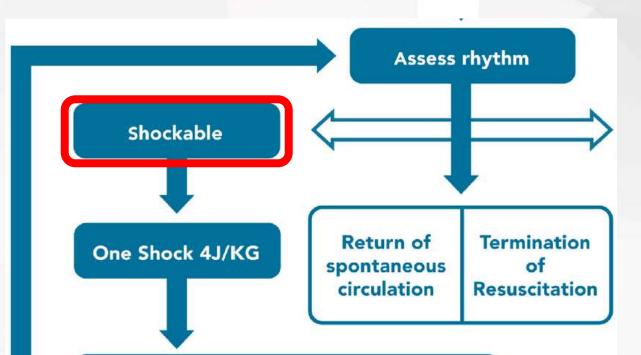
Cardiac arrest recognised? (including bradycardia due to hypoxia or ischemia)

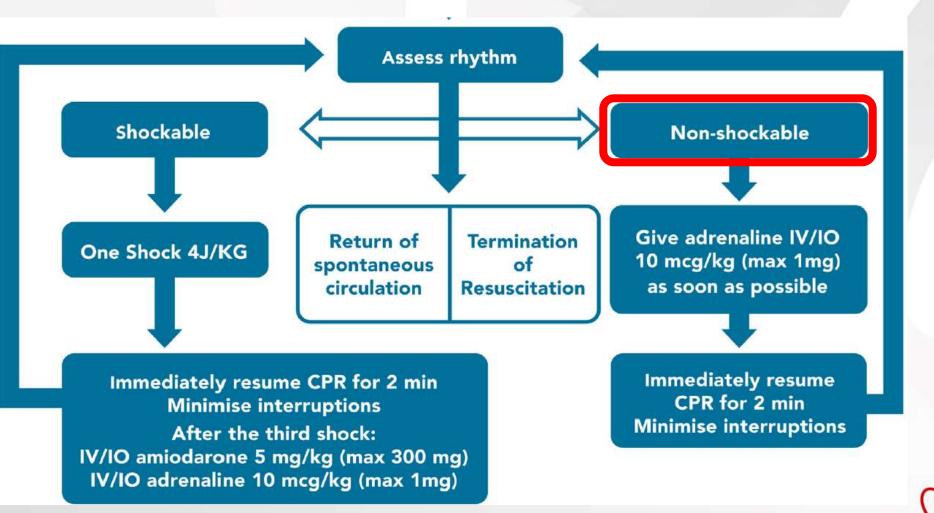
> Commence / continue PBLS Minimise interruptions Ensure the EMS /ALS team is alerted Attach defibrillator / monitor

SAFE? - SHOUT 'HELP'


Cardiac arrest recognised? (including bradycardia due to hypoxia or ischemia)

> Commence / continue PBLS Minimise interruptions Ensure the EMS /ALS team is alerted Attach defibrillator / monitor





Immediately resume CPR for 2 min Minimise interruptions After the third shock: IV/IO amiodarone 5 mg/kg (max 300 mg) IV/IO adrenaline 10 mcg/kg (max 1mg)

DURING CPR

- Ensure high-quality CPR: rate, depth, recoil
- Provide bag-mask ventilation with 100% oxygen (2-person approach)
- Avoid hyperventilation
- Vascular access (intravenous, intraosseous)
- Once started, give adrenaline every 3-5 min
- Flush after each drug
- Repeat amiodarone 5 mg/kg (max 150mg) after the 5th shock

DURING CPR

- Ensure high-quality CPR: rate, depth, recoil
- Provide bag-mask ventilation with 100% oxygen (2-person approach)
- Avoid hyperventilation
- Vascular access (intravenous, intraosseous)
- Once started, give adrenaline every 3-5 min
- Flush after each drug
- Repeat amiodarone 5 mg/kg (max 150mg) after the 5th shock
- Consider an advanced airway and capnography (if competent)
- Provide continuous compressions when a tracheal tube is in place. Ventilate at a rate of 25 (infants) – 20 (1-8y) – 15 (8-12y) or 10 (>12y) per minute
- Consider stepwise escalating shock dose (max 8J/kg – max 360J) for refractory VF/pVT (≥6 shocks)

CORRECT REVERSIBLE CAUSES

- Hypoxia
- Hypovolaemia
- Hyper/hypokalaemia, -calcaemia, -magnesemia; Hypoglycaemia
- Hypothermia hyperthermia
- Toxic agents
- Tension pneumothorax
- Tamponade (cardiac)
- Thrombosis (coronary or pulmonary)

CORRECT REVERSIBLE CAUSES

- Hypoxia
- Hypovolaemia
- Hyper/hypokalaemia, -calcaemia, -magnesemia; Hypoglycaemia
- Hypothermia hyperthermia
- Toxic agents
- Tension pneumothorax
- Tamponade (cardiac)
- Thrombosis (coronary or pulmonary)

ADJUST ALGORITHM IN SPECIFIC SETTINGS (E.G. TRAUMA, E-CPR)

IMMEDIATE POST ROSC

- ABCDE approach
- Controlled oxygenation (Sp0₂ 94-98%) & ventilation (normocapnia)
- Avoid hypotension
- Treat precipitating causes

DURING CPR

- Ensure high-quality CPR: rate, depth, recoil
- Provide bag-mask ventilation with 100% oxygen (2-person approach)
- Avoid hyperventilation
- Vascular access (intravenous, intraosseous)
- Once started, give adrenaline every 3-5 min
- Flush after each drug
- Repeat amiodarone 5 mg/kg (max 150mg) after the 5th shock
- Consider an advanced airway and capnography (if competent)
- Provide continuous compressions when a tracheal tube is in place. Ventilate at a rate of 25 (infants) – 20 (1-8y) – 15 (8-12y) or 10 (>12y) per minute
- Consider stepwise escalating shock dose (max 8J/kg – max 360J) for refractory VF/pVT (≥6 shocks)

Sutton et al

Crit Care Med 2019; 47:1627-1636

Sutton et al

Crit Care Med 2019; 47:1627-1636

TABLE 1. Prearrest Characteristics by Survival to Hospital Discharge

Overall (<i>n</i> = 47)	Survival to Ho		
	Yes (<i>n</i> = 18)	No (<i>n</i> = 29)	P
			0.135ª
30 (64)	14 (78)	16 (55)	
17 (36)	4 (22)	13 (45)	
	30 (64)	Overall (n = 47) Yes (n = 18) 30 (64) 14 (78)	30 (64) 14 (78) 16 (55)

Sutton et al

Crit Care Med 2019; 47:1627-1636

TABLE 2. Event Characteristics by Survival to Hospital Discharge

		Survival to Ho		
Event Characteristic	Overall (<i>n</i> = 47)	Yes (<i>n</i> = 18)	No (<i>n</i> = 29)	P
Location of CPR event, n (%)				0.006 ^b
PICU	20 (43)	3 (17)	17 (59)	
Cardiac ICU	27 (57)	15 (83)	12 (41)	

Crit Care Med 2019; 47:1627-1636

TABLE 3. Odds Ratio Estimates for High Ventilation Rate With Outcomes

OR = odds ratio.

^aAll models estimate the odds of the outcome for ventilation rate \geq 30 breaths/min for infants < 1 yr and \geq 25 breaths/min for children \geq 1 yr. Estimates are from logistic regression models with Firth penalized likelihood.

Crit Care Med 2019; 47:1627-1636

TABLE 3. Odds Ratio Estimates for High Ventilation Rate With Outcomes

Modelª	Return of Spontaneous Circulation, OR (95% CI)	p	Survival to Hospital Discharge, OR (95% CI)	P	Survival With Favorable Neurologic Outcome, OR (95% Cl)	p
Unadjusted	4.64 (1.32–16.27)	0.017	4.73 (1.17–19.13)	0.029	4.73 (1.17–19.13)	0.029
Adjusted for cardiac ICU vs PICU	4.45 (1.27–15.60)	0.020	5.97 (1.29–27.67)	0.022	5.97 (1.29–27.67)	0.022
Adjusted for initial rhythm	4.09 (1.14–14.63)	0.030	3.87 (0.91–16.40)	0.066	3.87 (0.91–16.40)	0.066
Adjusted for weekday vs weeknight/weekend	5.17 (1.38–19.36)	0.015	4.12 (1.00–16.88)	0.049	4.12 (1.00-16.88)	0.049

OR = odds ratio.

^aAll models estimate the odds of the outcome for ventilation rate \geq 30 breaths/min for infants < 1 yr and \geq 25 breaths/min for children \geq 1 yr. Estimates are from logistic regression models with Firth penalized likelihood.

Sutton et al

Crit Care Med 2019; 47:1627-1636

Conclusions

- In this multicenter cohort, ventilation rates exceeding guidelines were common.
- Among the range of rates delivered, higher rates were associated with improved survival to hospital discharge.

Accademia Medica Infermieristica di Emergenza e Terapia Intensiva Peolatrica

GRAZIE PER L'ATTENZIONE!

Italian Resuscitation Council

